- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chikkahalli_Lokesh, Punith (1)
-
Cockerham, Alexander (1)
-
Fathpour, Sasan (1)
-
Sun, Mingman (1)
-
Xu, Lei (1)
-
Xue, Fang (1)
-
Yu, Xiaoming (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study examines burst laser-induced pitting (BLIP), an understudied surface modification phenomenon driven by ultrafast laser bursts with sub-picosecond to picosecond inter-pulse delays. Through SEM and AFM analysis, we characterize BLIP as sub-micron pits with polarizationdependent oval shapes, alongside high-fluence melting zones and localized ripple-like structures. Unlike conventional LIPSS, BLIP demonstrates exceptional energy coupling efficiency, evidenced by 10× greater damage areas and a steeper fluence-scaling expansion rate than LIPSS, attributed to transient carrier-mediated processes. Pit density decays exponentially with delay (τ ≈ 6.6-8.9 ps), matching the timescale of self-trapped exciton (STE) relaxation, while spatial statistics reveal a delay-driven transition from field-guided ordering (1-5 ps) to randomized distributions (>10 ps). The resonant-like angular distributions and delay-dependent ellipticity reduction indicate competing mechanisms: optical field enhancement dominates at short delays, while energy dissipation and structure disordering prevail at longer delays. Simulation of nanoplasma excitation reveals near-field optical field enhancements responsible for the ellipticity and ripple-like structures. Beyond their fundamental significance, these BLIP nanostructures offer practical functionalities, including use as anti-reflection coatings and hydrophobic surfaces. These findings establish BLIP as a new paradigm in ultrafast laser-material interactions, where burst parameters selectively activate defect-mediated or field-driven modification pathways in dielectrics.more » « less
An official website of the United States government
